High Profile Area at the

© Fotowerk Ganzer Berg
© Fotowerk Ganzer Berg
Prof. Marvin N. Wright

Further information:

Head of Emmy Noether Junior Research Group: "Beyond Prediction - Statistical Inference with Machine Learning"

Associate Professor at the Section of Biostatistics, Department of Public Health, University of Copenhagen

Personal website: https://mnwright.github.io/
Google Scholar: http://scholar.google.com/citations?user=4_VM5MIAAAAJ

Projects:

Ecosystem

Publications
2021 // journal-article

The Translational Machine: A novel machine-learning approach to illuminate complex genetic architectures

Genetic Epidemiology

Askland, K.D.; Strong, D.; Wright, M.N.; Moore, J.H.
DOI: 10.1002/gepi.22383

2021 // other

Relating the partial dependence plot and permutation feature importance to the data generating process

arXiv

Molnar, C.; Freiesleben, T.; König, G.; Casalicchio, G.; Wright, M.N.; Bischl, B.
DOI: 10.48550/arxiv.2109.01433

2021 // journal-article

Testing conditional independence in supervised learning algorithms

Machine Learning

Watson, D.S.; Wright, M.N.
DOI: 10.1007/s10994-021-06030-6

2021 // journal-article

Association of Individual Motor Abilities and Accelerometer-Derived Physical Activity Measures in Preschool-Aged Children

Journal for the Measurement of Physical Behavior

Breau, B.; Brandes, B.; Wright, M.N.; Buck, C.; Vallis, L.A.; Brandes, M.
DOI: 10.1123/jmpb.2020-0065

2021 // journal-article

Personalized need of care in an ageing society: The making of a prediction tool based on register data

Journal of the Royal Statistical Society. Series A: Statistics in Society

Wright, M.N.; Kusumastuti, S.; Mortensen, L.H.; Westendorp, R.G.J.; Gerds, T.A.
DOI: 10.1111/rssa.12644

2021 // other

Generalization of the change of variables formula with applications to residual flows

arXiv

Koenen, N.; Wright, M.N.; Maaß, P.; Behrmann, J.
DOI: 10.48550/arxiv.2107.04346

2021 // journal-article

Polygenic risk for obesity and its interaction with lifestyle and sociodemographic factors in European children and adolescents

International Journal of Obesity

Hüls, A.; Wright, M.N.; Bogl, L.H.; Kaprio, J.; Lissner, L.; Molnár, D.; Moreno, L.A.; De Henauw, S.; Siani, A.; Veidebaum, T.; Ahrens, W.; Pigeot, I.; Foraita, R.
DOI: 10.1038/s41366-021-00795-5

2020 // journal-article

Statistical learning approaches in the genetic epidemiology of complex diseases

Human genetics

DOI: 10.1007/s00439-019-01996-9

2020 // journal-article

Discrete-time survival forests with Hellinger distance decision trees

Data Mining and Knowledge Discovery

Schmid, M.; Welchowski, T.; Wright, M.N.; Berger, M.
DOI: 10.1007/s10618-020-00682-z

2020 // other

A healthy childhood environment helps to combat inherited susceptibility to obesity

bioRxiv

Hüls, A.; Wright, M.N.; Bogl, L.H.; Kaprio, J.; Lissner, L.; Molnár, D.; Moreno, L.; De Henauw, S.; Siani, A.; Veidebaum, T.; Ahrens, W.; Pigeot, I.; Foraita, R.
DOI: 10.1101/2020.01.13.905125

2020 // journal-article

Impact of "JolinchenKids-Fit and healthy in Daycare" on children's objectively measured physical activity: A cluster-controlled study

Journal of Physical Activity and Health

Brandes, B.; Buck, C.; Wright, M.N.; Pischke, C.R.; Brandes, M.
DOI: 10.1123/jpah.2019-0536

2019 // journal-article

Splitting on categorical predictors in random forests

PeerJ


2019 // journal-article

A Random Forest Approach for Bounded Outcome Variables

Journal of Computational and Graphical Statistics

DOI: 10.48550/arxiv.1901.06211

2019 // journal-article

Block Forests: random forests for blocks of clinical and omics covariate data

BMC bioinformatics

DOI: 10.1186/s12859-019-2942-y

2019 // journal-article

Accelerometry-Based Prediction of Energy Expenditure in Preschoolers

Journal for the Measurement of Physical Behavior

DOI: 10.1123/jmpb.2018-0032

2019 // journal-article

Hyperparameters and tuning strategies for random forest

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery

DOI: 10.48550/arxiv.1804.03515

2018 // journal-article

Detection of drug risks after approval: Methods development for the use of routine statutory health insurance data,Detection of drug risks after approval: Methods development for the use of routine statutory health insurance data

Bundesgesundheitsblatt - Health research - Health protection

Foraita, R.; Dijkstra, L.; Falkenberg, F.; Garling, M.; Linder, R.; Pflock, R.; Rizkallah, M.R.; Schwaninger, M.; Wright, M.N.; Pigeot, I.
DOI: 10.1007/s00103-018-2786-z

2018 // journal-article

Support Vector Machines for Survival Analysis with R.

R Journal

DOI: 10.32614/rj-2018-005

2018 // journal-article

Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables

PeerJ


2018 // journal-article

Low-level mitochondrial heteroplasmy modulates DNA replication, glucose metabolism and lifespan in mice

Scientific reports

DOI: 10.1101/179622

2018 // journal-article

The revival of the Gini importance?

Bioinformatics


2017 // journal-article

SoilGrids250m: Global gridded soil information based on machine learning

PLoS one

DOI: 10.1371/journal.pone.0169748

2017 // journal-article

ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R

Journal of Statistical Software

DOI: 10.18637/jss.v077.i01

2017 // book-chapter

Preprocessing and Quality Control for Whole-Genome Sequences from the Illumina HiSeq X Platform

Statistical Human Genetics

DOI: 10.1007/978-1-4939-7274-6_30

2017 // journal-article

Unbiased split variable selection for random survival forests using maximally selected rank statistics

Statistics in medicine

DOI: 10.1002/sim.7212