2025 // other
CONDITIONAL FEATURE IMPORTANCE WITH GENERATIVE MODELING USING ADVERSARIAL RANDOM FORESTS
arXiv
Blesch, K.; Koenen, N.; Kapar, J.; Golchian, P.; Burk, L.; Loecher, M.; Wright, M.N.
DOI: 10.48550/arXiv.2501.11178
2024 // other
Interpretable Machine Learning for Survival Analysis
arXiv
Langbein, S.H.; Krzyziński, M.; Spytek, M.; Baniecki, H.; Biecek, P.; Wright, M.N.
DOI: 10.48550/arXiv.2403.10250
2024 // book-chapter
Model interpretation
Applied Machine Learning Using mlr3 in R
Dandl, S.; Biecek, P.; Casalicchio, G.; Wright, M.N.
DOI: 10.1201/9781003402848-12
2024 // other
Fast Estimation of Partial Dependence Functions using Trees
arXiv
Liu, J.; Steensgaard, T.; Wright, M.N.; Pfister, N.; Hiabu, M.
DOI: 10.48550/arXiv.2410.13448
2024 // book-chapter
Non-sequential Pipelines and Tuning
Applied Machine Learning Using mlr3 in R
Binder, M.; Pfisterer, F.; Becker, M.; Wright, M.N.
DOI: 10.1201/9781003402848-8
2024 // journal-article
arfpy: A Python Package for Density Estimation and Generative Modeling with Adversarial Random Forests
Journal of Open Research Software
Blesch, K.; Wright, M.N.
DOI: 10.5334/jors.492
2024 // other
A Large-Scale Neutral Comparison Study of Survival Models on Low-Dimensional Data
arXiv
Burk, L.; Zobolas, J.; Bischl, B.; Bender, A.; Wright, M.N.; Sonabend, R.
DOI: 10.48550/arXiv.2406.04098
2024 // book-chapter
Feature Selection
Applied Machine Learning Using mlr3 in R
Wright, M.N.
DOI: 10.1201/9781003402848-6
2024 // journal-article
Energy expenditure prediction in preschool children: a machine learning approach using accelerometry and external validation
Physiological Measurement
Coyle-Asbil, H.J.; Burk, L.; Brandes, M.; Brandes, B.; Buck, C.; Wright, M.N.; Vallis, L.A.
DOI: 10.1088/1361-6579/ad7ad2
2024 // journal-article
Random Survival Forests With Competing Events: A Subdistribution-Based Imputation Approach
Biometrical Journal
Behning, C.; Bigerl, A.; Wright, M.N.; Sekula, P.; Berger, M.; Schmid, M.
DOI: 10.1002/bimj.202400014
2024 // journal-article
Conditional feature importance for mixed data
AStA Advances in Statistical Analysis
Blesch, K.; Watson, D.S.; Wright, M.N.
DOI: 10.1007/s10182-023-00477-9
2024 // book-chapter
A Guide to Feature Importance Methods for Scientific Inference
Fiona Katharina Ewald; Ludwig Bothmann; Marvin N. Wright; Bernd Bischl; Giuseppe Casalicchio; Gunnar König
2024 // book-chapter
Toward Understanding the Disagreement Problem in Neural Network Feature Attribution
Niklas Koenen; Marvin N. Wright
2024 // journal-article
A discovery and verification approach to pharmacovigilance using electronic healthcare data
Frontiers in Pharmacology
Dijkstra, L.; Schink, T.; Linder, R.; Schwaninger, M.; Pigeot, I.; Wright, M.N.; Foraita, R.
DOI: 10.3389/fphar.2024.1426323
2024 // book-chapter
CountARFactuals - Generating Plausible Model-Agnostic Counterfactual Explanations with Adversarial Random Forests
Susanne Dandl; Kristin Blesch; Timo Freiesleben; Gunnar König; Jan Kapar; Bernd Bischl; Marvin N. Wright
2023 // conference-paper
Unfooling SHAP and SAGE: Knockoff Imputation for Shapley Values
Communications in Computer and Information Science
Blesch, K.; Wright, M.N.; Watson, D.
DOI: 10.1007/978-3-031-44064-9_8
2023 // conference-paper
Unifying local and global model explanations by functional decomposition of low dimensional structures
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics
Hiabu, Munir; Meyer, Joseph T.; Wright, Marvin N.; Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem
DOI: 10.48550/arXiv.2208.06151
2023 // other
Interpreting Deep Neural Networks with the Package innsight
arXiv
Koenen, N.; Wright, M.N.
DOI:
2023 // other
Decomposing Global Feature Effects Based on Feature Interactions
arXiv
Herbinger, J.; Wright, M.N.; Nagler, T.; Bischl, B.; Casalicchio, G.
DOI: 10.48550/arXiv.2306.00541
2023 // conference-paper
Adversarial Random Forests for Density Estimation and Generative Modeling
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics
Watson, David S.; Blesch, Kristin; Kapar, Jan; Wright, Marvin N.; Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem
DOI: 10.48550/arXiv.2205.09435
2023 // book-chapter
Are SHAP Values Biased Towards High-Entropy Features?
Raphael Baudeu; Marvin N. Wright; Markus Loecher
2023 // journal-article
survex: an R package for explaining machine learning survival models
Bioinformatics
Spytek, M.; Krzyziński, M.; Langbein, S.H.; Baniecki, H.; Wright, M.N.; Biecek, P.
DOI: 10.1093/bioinformatics/btad723
2023 // journal-article
Genetic associations vary across the spectrum of fasting serum insulin: results from the European IDEFICS/I.Family children's cohort
Diabetologia
Mehlig, K.; Foraita, R.; Nagrani, R.; Wright, M.N.; De Henauw, S.; Molnár, D.; Moreno, L.A.; Russo, P.; Tornaritis, M.; Veidebaum, T.; Lissner, L.; Kaprio, J.; Pigeot, I.
DOI: 10.1007/s00125-023-05957-w
2022 // other
Forest tree species distribution for Europe 2 2000-2020: mapping potential and realized 3 distributions using spatiotemporal Machine 4 Learning
Research Square
Bonannella, C.; Hengl, T.; Heisig, J.; Parente, L.; Wright, M.N.; Herold, M.; de Bruin, S.
DOI: 10.21203/rs.3.rs-1252972/v3
2022 // journal-article
Special issue: Artificial intelligence in genomics
Human Genetics
Boulesteix, A.-L.; Wright, M.
DOI: 10.1007/s00439-022-02472-7