Wissenschaftsschwerpunkt der

© Martin Mundt
© Martin Mundt
Prof. Martin Mundt

Weitere Informationen:

Auszeichungen: Core Organizer at Queer in AI

Mitgliedschaften: Board Member of Directors at non-profit ContinualAI

Ökosystem

Publikationen
Oct 2024 // book-chapter

Distribution-Aware Replay for Continual MRI Segmentation

Lecture Notes in Computer Science

Nick Lemke; Camila González; Anirban Mukhopadhyay; Martin Mundt

2024 // other

BOWLL: A Deceptively Simple Open World Lifelong Learner

arXiv

Kamath, R.; Mitchell, R.; Paul, S.; Kersting, K.; Mundt, M.
DOI: 10.48550/arXiv.2402.04814

2024 // conference-paper

Designing a Hybrid Neural System to Learn Real-world Crack Segmentation from Fractal-based Simulation

Proceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024

Jaziri, A.; Mundt, M.; Rodriguez, A.F.; Ramesh, V.
DOI: 10.1109/WACV57701.2024.00844

2024 // other

CORE TOKENSETS FOR DATA-EFFICIENT SEQUENTIAL TRAINING OF TRANSFORMERS

arXiv

Paul, S.; Brack, M.; Schramowski, P.; Kersting, K.; Mundt, M.
DOI: 10.48550/arXiv.2410.05800

2024 // conference-paper

ADAPTIVE RATIONAL ACTIVATIONS TO BOOST DEEP REINFORCEMENT LEARNING

12th International Conference on Learning Representations, ICLR 2024

Delfosse, Q.; Schramowski, P.; Mundt, M.; Molina, A.; Kersting, K.
DOI:

2024 // conference-paper

Deep Classifier Mimicry without Data Access

Proceedings of Machine Learning Research

Braun, S.; Mundt, M.; Kersting, K.
DOI:

2024 // other

Where is the Truth? The Risk of Getting Confounded in a Continual World

arXiv

Busch, F.P.; Kamath, R.R.; Mitchell, R.; Stammer, W.; Kersting, K.; Mundt, M.
DOI: 10.48550/arXiv.2402.06434

Mar 2023 // journal-article

A wholistic view of continual learning with deep neural networks: Forgotten lessons and the bridge to active and open world learning

Neural Networks

Martin Mundt; Yongwon Hong; Iuliia Pliushch; Visvanathan Ramesh

2023 // conference-paper

Queer In AI: A Case Study in Community-Led Participatory AI

ACM International Conference Proceeding Series

Queerinai, O.O.; Ovalle, A.; Subramonian, A.; Singh, A.; Voelcker, C.; Sutherland, D.J.; Locatelli, D.; Breznik, E.; Klubicka, F.; Yuan, H.; Hetvi, J.; Zhang, H.; Shriram, J.; Lehman, K.; Soldaini, L.; Sap, M.; Deisenroth, M.P.; Pacheco, M.L.; Ryskina, M.; Mundt, M.; Agarwal, M.; Mclean, N.; Xu, P.; Pranav, A.; Korpan, R.; Ray, R.; Mathew, S.; Arora, S.; John, S.; Anand, T.; Agrawal, V.; Agnew, W.; Long, Y.; Wang, Z.J.; Talat, Z.; Ghosh, A.; Dennler, N.; Noseworthy, M.; Jha, S.; Baylor, E.; Joshi, A.; Bilenko, N.Y.; Mcnamara, A.; Gontijo-Lopes, R.; Markham, A.; Dong, E.; Kay, J.; Saraswat, M.; Vytla, N.; Stark, L.
DOI: 10.1145/3593013.3594134

2023 // conference-paper

Probabilistic Circuits That Know What They Don't Know

Proceedings of Machine Learning Research

Ventola, F.; Braun, S.; Yu, Z.; Mundt, M.; Kersting, K.
DOI:

2023 // other

MASKED AUTOENCODERS ARE EFFICIENT CONTINUAL FEDERATED LEARNERS

arXiv

Paul, S.; Frey, L.-J.; Kamath, R.; Kersting, K.; Mundt, M.
DOI: 10.48550/arXiv.2306.03542

2023 // other

Self-Expanding Neural Networks

arXiv

Mitchell, R.; Menzenbach, R.; Kersting, K.; Mundt, M.
DOI: 10.48550/arXiv.2307.04526

2023 // other

Continual Learning: Applications and the Road Forward

arXiv

Verwimp, E.; Aljundi, R.; Ben-David, S.; Bethge, M.; Cossu, A.; Gepperth, A.; Hayes, T.L.; Hüllermeier, E.; Kanan, C.; Kudithipudi, D.; Lampert, C.H.; Mundt, M.; Pascanu, R.; Popescu, A.; Tolias, A.S.; van de Weijer, J.; Liu, B.; Lomonaco, V.; Tuytelaars, T.; van de Ven, G.M.
DOI: 10.48550/arXiv.2311.11908

2023 // conference-paper

Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads

Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI)

Lutsch, A.; Singh, G.; Mundt, M.; Mogk, R.; Binnig, C.
DOI: 10.18420/BTW2023-44

2023 // conference-paper

Continual Causality: A Retrospective of the Inaugural AAAI-23 Bridge Program

Proceedings of Machine Learning Research

Mundt, M.; Cooper, K.W.; Dhami, D.S.; Ribeiro, A.; Smith, J.S.; Bellot, A.; Hayes, T.
DOI:

Mar 2022 // journal-article

Unified Probabilistic Deep Continual Learning through Generative Replay and Open Set Recognition

Journal of Imaging

Martin Mundt; Iuliia Pliushch; Sagnik Majumder; Yongwon Hong; Visvanathan Ramesh

2022 // journal-article

Return of the normal distribution: Flexible deep continual learning with variational auto-encoders

Neural Networks

Hong, Y.; Mundt, M.; Park, S.; Uh, Y.; Byun, H.
DOI: 10.1016/j.neunet.2022.07.016

2022 // conference-paper

When Deep Classifiers Agree: Analyzing Correlations Between Learning Order and Image Statistics

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Pliushch, I.; Mundt, M.; Lupp, N.; Ramesh, V.
DOI: 10.1007/978-3-031-20074-8_23

2022 // other

FEATHERS: Federated Architecture and Hyperparameter Search

arXiv

Seng, J.; Prasad, P.; Dhami, D.S.; Mundt, M.; Kersting, K.
DOI: 10.48550/arXiv.2206.12342

2022 // conference-paper

Predictive Whittle Networks for Time Series

Proceedings of Machine Learning Research

Yu, Z.; Ventola, F.; Thoma, N.; Dhami, D.S.; Mundt, M.; Kersting, K.
DOI:

2022 // conference-paper

Elevating Perceptual Sample Quality in Probabilistic Circuits through Differentiable Sampling

Proceedings of Machine Learning Research

Lang, S.; Mundt, M.; Ventola, F.; Peharz, R.; Kersting, K.
DOI:

2022 // conference-paper

CLEVA-COMPASS: A CONTINUAL LEARNING EVALUATION ASSESSMENT COMPASS TO PROMOTE RESEARCH TRANSPARENCY AND COMPARABILITY

ICLR 2022 - 10th International Conference on Learning Representations

Mundt, M.; Lang, S.; Delfosse, Q.; Kersting, K.
DOI:

2021 // conference-paper

Neural architecture search of deep priors: Towards continual learning without catastrophic interference

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops

Mundt, M.; Pliushch, I.; Ramesh, V.
DOI: 10.1109/CVPRW53098.2021.00391

2021 // conference-paper

Avalanche: An end-to-end library for continual learning

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops

Lomonaco, V.; Pellegrini, L.; Cossu, A.; Carta, A.; Graffieti, G.; Hayes, T.L.; De Lange, M.; Masana, M.; Pomponi, J.; Van De Ven, G.M.; Mundt, M.; She, Q.; Cooper, K.; Forest, J.; Belouadah, E.; Calderara, S.; Parisi, G.I.; Cuzzolin, F.; Tolias, A.S.; Scardapane, S.; Antiga, L.; Ahmad, S.; Popescu, A.; Kanan, C.; Van De Weijer, J.; Tuytelaars, T.; Bacciu, D.; Maltoni, D.
DOI: 10.1109/CVPRW53098.2021.00399

2021 // conference-paper

A procedural world generation framework for systematic evaluation of continual learning

Neural Information Processing Systems, Datasets and Benchmarks Track