Wissenschaftsschwerpunkt der

© Martin Mundt
© Martin Mundt
Prof. Martin Mundt

Weitere Informationen:

Auszeichungen: Core Organizer at Queer in AI

Mitgliedschaften: Board Member of Directors at non-profit ContinualAI

Ökosystem

Publikationen
2025 // other

Continual Learning Should Move Beyond Incremental Classification

Arxiv

Mitchell, R.; Alliegro, A.; Camoriano, R.; Carrión-Ojeda, D.; Carta, A.; Chalvatzaki, G.; Churamani, N.; D’Eramo, C.; Hamidi, S.; Hesse, R.; Hinder, F.; Kamath, R.R.; Lomonaco, V.; Paul, S.; Pistilli, F.; Tuytelaars, T.; van de Ven, G.M.; Kersting, K.; Schaub-Meyer, S.; Mundt, M.
DOI: 10.48550/arXiv.2502.11927

2025 // journal-article

Aligning generalization between humans and machines

Nature Machine Intelligence

Ilievski, F.; Hammer, B.; van Harmelen, F.; Paassen, B.; Saralajew, S.; Schmid, U.; Biehl, M.; Bolognesi, M.; Dong, X.L.; Gashteovski, K.; Hitzler, P.; Marra, G.; Minervini, P.; Mundt, M.; Ngomo, A.-C.N.; Oltramari, A.; Pasi, G.; Saribatur, Z.G.; Serafini, L.; Shawe-Taylor, J.; Shwartz, V.; Skitalinskaya, G.; Stachl, C.; van de Ven, G.M.; Villmann, T.
DOI: 10.1038/s42256-025-01109-4

2025 // other

The Cake that is Intelligence and Who Gets to Bake it: An AI Analogy and its Implications for Participation

Arxiv

Mundt, M.; Ovalle, A.; Friedrich, F.; Pranav, A.; Paul, S.; Brack, M.; Kersting, K.; Agnew, W.
DOI: 10.48550/arXiv.2502.03038

2025 // other

Tractable Representation Learning with Probabilistic Circuits

Arxiv

Braun, S.; Sidheekh, S.; Vergari, A.; Mundt, M.; Natarajan, S.; Kersting, K.
DOI: 10.48550/arXiv.2507.04385

2025 // conference-paper

Scaling Probabilistic Circuits via Data Partitioning

Proceedings of Machine Learning Research

Seng, J.; Busch, F.P.; Prasad, P.; Dhami, D.S.; Mundt, M.; Kersting, K.
DOI:

2025 // other

Where is the Truth? The Risk of Getting Confounded in a Continual World

Arxiv

Busch, F.P.; Kamath, R.R.; Mitchell, R.; Stammer, W.; Kersting, K.; Mundt, M.
DOI: 10.48550/arXiv.2402.06434

Oct 2024 // book-chapter

Distribution-Aware Replay for Continual MRI Segmentation

Lecture Notes in Computer Science

Nick Lemke; Camila González; Anirban Mukhopadhyay; Martin Mundt

2024 // other

CORE TOKENSETS FOR DATA-EFFICIENT SEQUENTIAL TRAINING OF TRANSFORMERS

arXiv

Paul, S.; Brack, M.; Schramowski, P.; Kersting, K.; Mundt, M.
DOI: 10.48550/arXiv.2410.05800

2024 // conference-paper

Deep Classifier Mimicry without Data Access

Proceedings of Machine Learning Research

Braun, S.; Mundt, M.; Kersting, K.
DOI:

2024 // conference-paper

Designing a Hybrid Neural System to Learn Real-world Crack Segmentation from Fractal-based Simulation

Proceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024

Jaziri, A.; Mundt, M.; Rodriguez, A.F.; Ramesh, V.
DOI: 10.1109/WACV57701.2024.00844

2024 // other

BOWL: A DECEPTIVELY SIMPLE OPEN WORLD LEARNER

Arxiv

Kamath, R.R.; Mitchell, R.; Paul, S.; Kersting, K.; Mundt, M.
DOI: 10.48550/arXiv.2402.04814

2024 // conference-paper

ADAPTIVE RATIONAL ACTIVATIONS TO BOOST DEEP REINFORCEMENT LEARNING

12th International Conference on Learning Representations, ICLR 2024

Delfosse, Q.; Schramowski, P.; Mundt, M.; Molina, A.; Kersting, K.
DOI:

Mar 2023 // journal-article

A wholistic view of continual learning with deep neural networks: Forgotten lessons and the bridge to active and open world learning

Neural Networks

Martin Mundt; Yongwon Hong; Iuliia Pliushch; Visvanathan Ramesh

2023 // other

MASKED AUTOENCODERS ARE EFFICIENT CONTINUAL FEDERATED LEARNERS

arXiv

Paul, S.; Frey, L.-J.; Kamath, R.; Kersting, K.; Mundt, M.
DOI: 10.48550/arXiv.2306.03542

2023 // other

Self-Expanding Neural Networks

arXiv

Mitchell, R.; Menzenbach, R.; Kersting, K.; Mundt, M.
DOI: 10.48550/arXiv.2307.04526

2023 // other

Continual Learning: Applications and the Road Forward

arXiv

Verwimp, E.; Aljundi, R.; Ben-David, S.; Bethge, M.; Cossu, A.; Gepperth, A.; Hayes, T.L.; Hüllermeier, E.; Kanan, C.; Kudithipudi, D.; Lampert, C.H.; Mundt, M.; Pascanu, R.; Popescu, A.; Tolias, A.S.; van de Weijer, J.; Liu, B.; Lomonaco, V.; Tuytelaars, T.; van de Ven, G.M.
DOI: 10.48550/arXiv.2311.11908

2023 // conference-paper

Queer In AI: A Case Study in Community-Led Participatory AI

ACM International Conference Proceeding Series

Queerinai, O.O.; Ovalle, A.; Subramonian, A.; Singh, A.; Voelcker, C.; Sutherland, D.J.; Locatelli, D.; Breznik, E.; Klubicka, F.; Yuan, H.; Hetvi, J.; Zhang, H.; Shriram, J.; Lehman, K.; Soldaini, L.; Sap, M.; Deisenroth, M.P.; Pacheco, M.L.; Ryskina, M.; Mundt, M.; Agarwal, M.; Mclean, N.; Xu, P.; Pranav, A.; Korpan, R.; Ray, R.; Mathew, S.; Arora, S.; John, S.; Anand, T.; Agrawal, V.; Agnew, W.; Long, Y.; Wang, Z.J.; Talat, Z.; Ghosh, A.; Dennler, N.; Noseworthy, M.; Jha, S.; Baylor, E.; Joshi, A.; Bilenko, N.Y.; Mcnamara, A.; Gontijo-Lopes, R.; Markham, A.; Dong, E.; Kay, J.; Saraswat, M.; Vytla, N.; Stark, L.
DOI: 10.1145/3593013.3594134

2023 // conference-paper

Probabilistic Circuits That Know What They Don't Know

Proceedings of Machine Learning Research

Ventola, F.; Braun, S.; Yu, Z.; Mundt, M.; Kersting, K.
DOI:

2023 // conference-paper

Continual Causality: A Retrospective of the Inaugural AAAI-23 Bridge Program

Proceedings of Machine Learning Research

Mundt, M.; Cooper, K.W.; Dhami, D.S.; Ribeiro, A.; Smith, J.S.; Bellot, A.; Hayes, T.
DOI:

2023 // conference-paper

Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads

Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI)

Lutsch, A.; Singh, G.; Mundt, M.; Mogk, R.; Binnig, C.
DOI: 10.18420/BTW2023-44

Mar 2022 // journal-article

Unified Probabilistic Deep Continual Learning through Generative Replay and Open Set Recognition

Journal of Imaging

Martin Mundt; Iuliia Pliushch; Sagnik Majumder; Yongwon Hong; Visvanathan Ramesh

2022 // journal-article

Return of the normal distribution: Flexible deep continual learning with variational auto-encoders

Neural Networks

Hong, Y.; Mundt, M.; Park, S.; Uh, Y.; Byun, H.
DOI: 10.1016/j.neunet.2022.07.016

2022 // conference-paper

CLEVA-COMPASS: A CONTINUAL LEARNING EVALUATION ASSESSMENT COMPASS TO PROMOTE RESEARCH TRANSPARENCY AND COMPARABILITY

ICLR 2022 - 10th International Conference on Learning Representations

Mundt, M.; Lang, S.; Delfosse, Q.; Kersting, K.
DOI:

2022 // conference-paper

Elevating Perceptual Sample Quality in Probabilistic Circuits through Differentiable Sampling

Proceedings of Machine Learning Research

Lang, S.; Mundt, M.; Ventola, F.; Peharz, R.; Kersting, K.
DOI:

2022 // conference-paper

Predictive Whittle Networks for Time Series

Proceedings of Machine Learning Research

Yu, Z.; Ventola, F.; Thoma, N.; Dhami, D.S.; Mundt, M.; Kersting, K.
DOI: